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Abstract: A feature detector and a feature descriptor are presented, which are applicable to 3D range data. The
feature detector is used to identify locations in the range data at which the feature descriptor is applied. The
feature descriptor, or feature transform, calculates a signature for each identified location on the basis of local
shape information. The approach used in both the feature detector and the descriptor is motivated by the
success of the scale invariant feature transform and speeded up robust features approaches in the 2D case.
Using synthetic data, the authors evaluate the repeatability of the detector and robustness of the descriptor
to global transformations and image noise. The complete system is then applied to the problem of automatic

detection of repeated structure in real range images.

1 Introduction

The identification of image points, which correspond to the
projections of the same scene point, is one of the fundamental
problems in computer vision. This has been labelled the
correspondence problem in stereo, but is also a critical
component of object tracking, object recognition and
image-based classification among a host of other problems.

Significant gains have been made recently in the use of
local feature descriptors that, given a keypoint in an image,
calculate a signature describing an image region centred at
that point. Using a collection of such local descriptors to
describe an object visible in an image set provides
robustness to partial occlusion, and depending on the
design of the descriptor, can also provide robustness to
changes in illumination and viewpoint.

For example, the scale invariant feature transform (SIFT)
[1] calculates a signature that characterises the image in the
neighbourhood of a keypoint in a way that is robust to
changes in global illumination, object rotation and scale.
The signature is based on histograms of image grey-level
gradients, which are normalised with respect to a locally
dominant orientation and scale.

The idea of this work is to build a local 3D feature
descriptor for range images with comparable robustness to
missing data and changes in viewpoint. Although this has

many applications, it was initially motivated by work in
image-based modelling. In this domain, it is common to
have a 3D data set — whether captured from a range finder,
or the output of structure and motion estimation, or
modelled manually — that is incomplete. Often it is the
case that this 3D data will contain repeated structure, some
instances of which are captured or modelled with higher
fidelity than others. If such repetition can be recognised
automatically, information from instances that are well
modelled can be propagated to those that are poorly
modelled, resulting in a more accurate overall model.

Previous 3D feature descriptors include shape contexts [2]
and spin images [3]. Both of these describe local shape by
partitioning the volume around a keypoint into spatial bins
and then counting the number of 3D points in each bin.
Neither transform is invariant to scale, and, although they
exhibit some robustness to rotation (histograms are
calculated relative to estimated surface normal), they are
sensitive to small changes in the computed surface normal.

The success of local feature descriptors depends on the
choice of keypoint locations. In 2D images, good keypoints
are those that can be well localised, such as corner points
where the intensity gradient is high in all directions.
Several techniques, such as the Harris corner detector [4]
and more recently SURF [5], have been developed to
identify these points. In 3D images, we also require
keypoints that can be well localised, but in 3D this requires
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that the spatial gradient of the surface about a keypoint be
high in all three directions.

This paper proposes a new 3D feature detector and
descriptor that extend the successful SIFT and SURF
algorithms to keypoint selection, identification and
matching in range data. It brings many of the advantages
of these 2D algorithms to bear on the problem of 3D
structure recognition. We show how this 3D keypoint
detector and descriptor can be combined to detect repeated
3D structure in range data of building facades.

The remainder of this paper is organised as follows.
Section 2 describes our interest point detector, whereas
Section 3 describes our 3D descriptor. In Sections 4 and 5,
we present empirical results on synthetic and real data, and
Section 6 concludes the paper.

2 Feature detection in 3D

Our detector accepts a range image as input, and outputs a set
of 3D points with corresponding characteristic scales. We
adopt Lindeberg’s principle for scale selection, which
suggests looking for the scale space maxima of normalised
derivatives [6]. However, the notion of a derivative is not
well defined in a range image, and so we must first apply a
suitable transformation. We use a density sampling
operation that produces a regular density map. The basic
operation of our detector can be summarised as follows:

1. Sample the density function at regularly spaced locations
to create a density map

2. Construct a scale space for the density map
3. Find local scale space maxima within the density map.

In the following sections, we describe each step in more
detail.

2.1 Generating the density map
Let the range data be given as a set of points
X ={x, € R}

Let n(B) be the number of data points in the region B C R3.
We define a set of equal-sized boxes B = {Bl-j,e}(i’: Hercs
distributed regularly in each spatial dimension, where I is
the domain of the input range image.

We approximate the density in each box By by the
number of range points in it, normalised by the maximum
number of points in any box

n(Bijé)

argmax {n(B;;)}
(IS

D, j, k) =

where D is the normalised density map.
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2.2 Scale space construction

We have no a priori knowledge of the scale at which
interesting features might occur, and so it is natural that we
consider several different scales. To do this, we construct a
scale space [6], following the standard approach in the 2D
setting.

Given a continuous signal /:R” — R (in our case, fis the
normalised density map D), the scale-space representation
L:R" x R — R of fis defined as the family of functions
resulting from convolution with Gaussian kernels of
increasing scale

L(-;0)=f()®g(-; 0)

In general, it will not be possible to obtain an analytic form
for L, and so we instead sample L at a set of discrete scales

% ={oy, ..., on}. Following [6], we sample the scale
such that each o7 is separated by a constant factor £
o =1
o1 =ko; i>2

For simplicity, we choose 4 such that there are an integral
number of scales between ¢ and 20; each such doubling of
o is an octave, and the number of scales sampled per octave
will be denoted 7. The scale separation factor £ is related
to nz by &= 2",

2.3 Identifying interest points

The detector must be able to extract the same (or similar)
interest points under a range of transformations, such as
changes of viewpoint or scale. This requires that interest
points be well localised in all three spatial directions.

We use local maxima of a function of spatial derivatives as
the criteria for interest point selection. Our approach is
partially motivated by the extensive 2D detector literature
indicating that the locations of maxima of spatial
derivatives are robust to a range of transformations [4, 6, 7].

Our detector operates as follows. First, we generate a scale
space for the input density map using the process described in
the previous section. Next, we use finite differences to
compute the Hessian

L (x; 0) ny(x; o) L& 0)
Hx; 0) = | L. 0) Ly(x0) L,k o)
L, (x; 0) Lzy(x; o) L,x; 0)

of the scale space at each sampled location. We apply a user—
defined threshold 71 to the determinant of the Hessian to
eliminate weak responses, and finally identify all remaining
local extrema by comparing each voxel with its scale space
neighbours. Only voxels that are greater than all neighbours
will be included in the final set of interest points.
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Figure 1 Interest points detected on a synthetic face model

Notice how interest points are concentrated at distinctive features
(nose, eyes, ears and so on) and not on smooth surfaces (such as
the hair, cheek or neck)

Notice also the strong similarity between the features detected on
the left and right sides of the face

When a feature is detected, we can automatically assign a
characteristic scale, which is the scale space level o at which
the feature was detected. This is useful for recognising
features appearing at different scales, as shown in the
following section. Fig. 1 shows some detected feature
locations on a 3D face model.

3  Feature description in 3D

3.1 Using surface normals
As previously mentioned, the SIFT descriptor [1] and its

variants have been shown to consistently outperform other
descriptors for the purpose of object recognition from 2D
images. All these descriptors use image gradient
orientations as the basic descriptive element, and a number
of authors have conjectured that this is the reason for their
success [5, 8, 9]. The image gradient orientation at a pixel
is the direction in which the image intensity changes
fastest. The obvious 3D generalisation is the principal
direction or surface normal [10].

We therefore use surface normals as the basic geometric
element by which to characterise local surface shape. In
addition to their intuitive appeal, surface normals have a
number of desirable properties for local surface description,
including robustness to sampling density and some types of
noise [11].

As surface normals are not typically provided with range
data, we use local plane fitting to calculate them from
nearby 3D points. To determine the surface normal vector
n at some point x in the range image, we fit a least squares
plane to the points within distance 7 of x and then take the
normal to this plane. We determine » dynamically: when
estimating the surface normal at a range point x; we set 7 to
the distance to the nth closest neighbour of x;, where 7 is a
user-defined parameter. In practice, we found »=10 a
suitable choice.

3.2 Generating the feature descriptor
vector

In this section, we detail how a feature description is obtained
for an interest point y detected at the characteristic scale o on
the basis of nearby surface normals. The feature vectors are

generated independently for each detected point, and so we
describe this process in terms of a single point.

3.2.1 Algorithm overview: We first define the support
region § containing all points within a distance R of the
interest point y

S={x, €X:|y—xl <R}

Based on [6], we choose R proportional to the characteristic
scale o of the feature. Experimentally, we have found that
setting R = 20 gives good performance. Note that R is
much larger than the radius r used in plane fitting, and,
hence, although » encompasses an area small enough to be
approximately planar, R is intended to encompass whatever
scene feature was detected at y (which will certainly not be
planar since the Hessian determinant on a plane is zero).
Points in § are called the support points for y.

Next, we compute the surface normals n; for each support
point «; as described earlier. For invariance to global object or
viewpoint transformations, we compute the surface normal n,
at the interest point y and then measure all other surface

normals by the angle 6, that they form with »,
0, = cos " (n; - n,)
We call 6; the deviation angle for the support point x;.

Next, we form a histogram v over deviation angles

(i) = Z k;
)

Vi€bin(i

where %; is the contribution of the support point x;. #; is
determined by two factors

e Contributions are normalised for density such that the
contribution from each part of the support region is based
on its surface area rather than the density of point samples
within it. We find the distance 4 from «; to the n” closest
point (7 is a user-specified parameter; we use n = 10) and
then approximate the density by p; = 1/d°.

¢ Contributions are convolved with a Gaussian centred at
the interest point with width o= R/2. This ensures that
the feature vector changes smoothly as the interest point
location changes, which is important since the detector may
not localise all interest points exactly.

Hence, the contribution of each point is given by

g, — y; R/2)
P;

ko=

1

The histogram bins are spaced linearly between 0° and 90°,
with deviation angles 6, > 90° mapped to 180 — 6,. The
final feature vector v is formed simply by taking the values
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in each histogram bin. For invariance to global sampling
density, the feature vector is normalised such that the sum
of its entries is 1.

3.2.2 Deviation angles: The deviation angles 6, do not
uniquely describe the surface normals n; because there are
many surface normals that would be assigned the same
deviation angle: these are the vectors obtained by sweeping
out a cone by rotating n; around the reference vector n,.
This may lead to a false match.

To remove this ambiguity, Frome ez al. [2] introduce
another variable ¢ describing the rotation of each n;
radially about the reference vector. However, this requires
an object-centric ‘reference direction’ against which to
measure the rotation of each #n;. Obtaining such a reference
direction robustly is difficult and computationally expensive.
Instead, we use just the deviation angle and leave the radial
ambiguity in the descriptor. We found this to be a good
trade-off between  robustness, discrimination and
computational expense.

3.3 Matching descriptor vectors

Thus far, we have attempted to design a descriptor that will
generate similar feature vectors for similar surface shapes
and different feature vectors for different surface shapes. In
this section, we investigate how to determine whether two
descriptor vectors represent the same shape or not.

Our feature vector is derived directly from a histogram, and
it is normalised such that its sum is 1, and thus, we may
regard it as a frequency distribution over deviation angles.
We use the earth movers distance (EMD) [12], a metric
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designed specifically for frequency distributions, which
explicitly uses the spatial relations between bins.

To decide whether a feature has a match at all, we use a
neighbour ratio test [1] as follows. If wp is the nearest
neighbour of w, then we find the second nearest
neighbour w¢ and compute the ratio

dr = X0 v5) (1)
d(vy, ve)

where d(-, -) is the EMD. If dr is below a user-defined

threshold, then the feature vectors are declared a match;

otherwise, the feature vectors have no match.

4 Tests on synthetic data

In order to empirically determine settings for the constants
used in the detection and description computation, and to
obtain some quantitative error analysis, initial tests were run
on synthetically generated range data.

To generate this data, a simulator was implemented to
convert a polygonal 3D mesh to a 3D point cloud. The
simulator accurately mimics the operation of a laser range
finder, including spacing point samples according to the
obliqueness of the surface to the scanner, as shown in
Fig. 256. Our synthetic data set consisted of 81 models
composed of between 12 and 20000 vertices. Some
examples of polygonal meshes that were used as the basis
for these models are shown in Fig. 2a.

All experiments are conducted using four octaves of scale,
four levels per octave (n; =4) and a detection threshold

Figure 2 Sample from the synthetic test set, and generated range data

a Sample from the test set for viewpoint changes
b Range data generated by simulator for cube model

The sampling density depends on the angle between the scanner and the surface normal

The range image is rotated for clearer visualisation
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Ty, = 107, These values were based on preliminary tests,
and not changed subsequently.

4.1 Detector repeatability tests

Given a pair of range images 4 and B separated by some
transformation 7, we compute the repeatability of the
detector as follows. We first detect all interest points in A4
and B. Next, we transform each interest point from B into
A and look for a match among the interest points detected
for A. Point y, is defined to match yp if the distance
between y, and yp is less than the smaller of the
characteristic scales of y4 and yp

if |y —y,Il < min (o, op)

otherwise

m(y ,, yp) = true,
2

= false, @)
This is similar to the test used by Mikolajezyk in his
evaluation of 2D detectors [7].

If we find a match, then the interest point is a repeat.
Then, we perform the same operation in reverse, mapping
interest points from A into B. The final repeatability is the
number of repeats divided by the total number of interest
points. A perfect detector would always attain a
repeatability of 1.

4.1.1 Repeatability under viewpoint changes: In
this experiment, we measured the repeatability of the
detector under viewpoint changes. We simulate range scans
at 13 viewpoints along a 120° arc and compute the
repeatability between the central viewpoint and each other
viewpoint.

Because of our simulation method, a change of viewpoint
results in a complete re-sampling of the model. This
experiment is difficult because the appearance of the object
changes drastically through a 60° rotation. For example,
half of the ‘face’ model is occluded after just a 30° change

100
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Repeatability £%)

20

-60 -40 -20 0 20

Viewpoint change (degrees)
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Figure 3 Detector stability with respect to changes in viewpoint

a Repeatability against viewpoint change, average for all models

in viewpoint, and so for this model, our detector could not
possibly achieve repeatability above 50%.

Fig. 3 shows the repeatability of our detector as well as the
number of corresponding interest points as a function of
viewpoint. As there are no true 3D feature detectors with
which to compare our results, we instead test against 3D
recognition systems that use 2D detectors on projections of
range data. In [5], an evaluation of four 2D detectors on
3D scenes comparable to our own test set showed that at a
viewpoint separation of 20°, the detectors achieved a
repeatability of between 60 and 80%, whereas, this dropped
to less than 5% for viewpoint changes of 60°. Our own
results show an average repeatability above 70% for a
viewpoint change of 20°, but at 60° the average
repeatability of our detector remains near 40%, compared
with the near zero repeatability attained by 2D detectors.
In general, we have found that our detector is comparable
to 2D detectors for small viewpoint changes but
significantly outperforms them for large viewpoint changes.

Fig. 34 shows that our detector was able to find a
significant number of corresponding interest points, even
at viewpoint changes above 60°. High-level recognition
systems often require as few as four matching interest
points [1], yet our detector generates on average more
than 15 matches in every experiment, and more than 50
for viewpoint changes less than 20°. In comparison, the
evaluation in [5] showed that 2D detectors were able to
generate just one or zero matching interest points at a
viewpoint change of 60°.

4.1.2 Repeatability under scale changes: In this
experiment, we measured the repeatability of the detector’s
under scale changes. We obtained the test set by simulating
range scans at different distances from the model.

Fig. 4 shows a consistent repeatability above 50% for all
decreases in scale (scale factor <1), with the average
repeatability consistently above 75%. This is a significant

250
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60  -40  -20 0 20 40 60
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b

b Total correspondences against viewpoint change, average for all models
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Figure 4 Detector stability with respect to change of scale

a Repeatability against scale change, average for all models
b Total correspondences against scale, average for all models

improvement over the results reported in [7] showing that 2D
detectors achieved repeatability consistently below 50% (even
though that evaluation only uses planar scenes). Our detector
has more difficulty with scale increases. This is because of
large increase in total interest points caused by the high
sampling density, which decreases the overall repeatability
even though the number of correct correspondences
remains fairly static (Fig. 42).

4.1.3 Repeatability under noise: To test the
repeatability of the detector in the presence of range finder
measurement noise, we added ii.d Gaussian noise of
varying variance to the synthetic 3D range points.

Fig. 5 shows a sharp decline in both repeatability and the
number of correspondences with increasing noise variance.
However, both metrics reach a lower threshold around a
repeatability of 10%/ eight correspondences and do not
decrease further, which indicates that the detector
continues to identify the most salient scene features even
after the addition of 10% noise.
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Figure 5 Results for noise added to the range image

35 4

Num correspondences

Num correspondences

www.ietdl.org

250

200

150

100

50

0

0 0.5 1 15 2 2,9 3 3.5 4
Scale change
b

4.2 Descriptor tests

We now turn to an empirical evaluation of our descriptor
using the same simulation system as described previously.

Each experiment in this section measures the descriptor’s
precision/recall (PR) curve [8, 13] between a range image
pair (4, B), that are related by a global transform, with a
varying neighbour ratio (1) threshold. To ensure the same
interest points appear in both images, each point detected
in image 4 is duplicated in B, and vice versa.

Each interest point y that has a match (i.e. has enough
points in its support region to compute a descriptor, and
the neighbour ratio test passes) is denoted a true positive if
m(y, y') is true, and false otherwise.

Having classified each match, we compute the precision
and recall for this test

. TP 1l TP
recision = ————, recall= —
P TP + FP’ N
250
200
150
100
50 -;. .....................................
SR
LES s .
0 ; e et S S S
0 2 q 6 8 10
Noise (%)
b

The noise magnitude was proportional to the radius of a bounding sphere around each model, and hence, 1% noise indicates we used a

Gaussian with variance equal to one hundredth the model radius
a Repeatability against range image noise, average for all models

b Total correspondences against range image noise, average for all models
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Figure 6 PR curves for our descriptor under varying viewpoint and scale

a Viewpoint

b Scale changes. Each data point represents an average over our complete test set for pairs separated by a particular rotation angle

where TP is the number of true positives, FP the number of
false positives and /V the total number of interest points that
have matches. Note that because we only ever allow a feature
to match with its best-matching counterpart, our experiments
do not attain 100% recall even for 0% precision.

4.2.1 Recognition under viewpoint changes: We
tested our descriptor’s performance under viewpoint
changes using the same data set used for the detector
viewpoint evaluation. Fig. 6 shows PR curves for our
descriptor for viewpoint changes between 10° and 50°.
The red line shows that at a viewpoint change of 10°, the
descriptor identifies 60% of all the matches present in the
data. As the viewpoint change increases, the descriptor’s
recognition rate falls. However, at 40°, our descriptor still
achieves a recall of 10% with false positives of 80%. This
indicates that our descriptor is able to recognise some
features even after a large viewpoint change. Furthermore,
high-level recognition systems have been shown to work
with comparably noisy input data [14].

The comparison with 2D descriptors is not completely fair

because 2D and 3D descriptors use different input data. We
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note, however, that 2D descriptors were able to achieve a
detection rate of only 10% at a viewpoint change of just
20° in [15], and that in that study viewpoints beyond 40°
were not even tested.

4.2.2 Recognition under scale changes: We tested
the performance of our descriptor under scale changes using
the same data set as that for the detector scale evaluation.
Fig. 6 (right) shows aggregate PR curves over our entire data
set. The descriptor struggles with scale changes that cause
significant numbers of features to either appear (with
increasing scale) or disappear (descreasing scale). as this can
significantly alter calculated surface normals. For example,
the front of ‘face’ model becomes almost flat when the scale
is very small, in contrast to the many variations (eyes, nose,
mouth) present at high scales.

5 Results for range finder data

Although we cannot perform a quantitative error analysis on
real range data, this section shows that the performance of the
detector is similar to that in the case of synthetic data, and
that the descriptor is able to match similar local structure.
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Figure 7 Effect of range image noise on repeatability and total correspondences, average for all models

Viewpoint changes from 10 to 50 degrees
a Repeatability against range image noise, average for all models

b Total correspondences against range image noise, average for all models
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Figure 8 PR curves for our descriptor under addition of
noise below 1%

Each data point is an average over our test set for a particular
neighbour ratio threshold

5.1 Detector repeatability

5.1.1 Repeatability with noise: Our first set of
experiments measured the repeatability of the detector
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under the addition of noise into the range image. These
experiments are identical to those performed for synthetic
data, except that here we use real range data.

Similar to the synthetic experiment, the addition of noise to
the range image (Fig. 7) produces decreasing repeatability
with a lower threshold below which the repeatability does
not drop. The threshold for range data appears to be ~5%;
slightly lower than that for synthetic data, which reflects the
greater average complexity of the range data scenes. For the
magnitude of noise expected in practice (below 1%), our
detector achieves repeatability above 95%.

5.2 Descriptor tests

In this section, we evaluate our descriptor using data captured
with a range finder. We use the same data set as that for the
detector experiments. We begin with an evaluation of our
descriptor under the addition of noise and then proceed to
full recognition tasks. Our final experiment uses the
detector and descriptor together to automatically identify
repeated structure in architectural scenes.

5.2.1 Recognition under noise: We test the
performance of our descriptor under the addition of noise by

[ |

Figure 9 Results for the two-category classification problem

a Category A interest points

b Category B interest points

c Category A features

d Category B features

e Pairwise distance matrix (darker is nearer)
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adding independent Gaussian noise with several variances to the
points comprising each range image and measuring precision
and recall with respect to the original data.

Using the same noise variances as in the synthetic
experiments destroys all salient features in the real range data.
Instead, we modified our experiments to use noise between
0.1% and 0.5%. In Fig. 8, we observe a reasonable
recognition rate at noise of 0.1%, which deceases significantly
after noise of 0.2%. Note that these noise levels are still much
larger than those which real range finders produce [16].

5.2.2 Two-category classification: One potential
application for our system is detecting repeated structure
within a scene. This problem can be considered as
recognition of a single object from different viewpoints and
hence, our previous results are applicable to this problem.
However, to test our descriptor for this specific problem,
we manually selected eight instances of two different
repeated features (Fig. 9). Then, we generated feature
vectors for each selected region and computed all pairwise
distances using the EMD. The pairwise distance matrix is
shown in Fig. 9¢. The figure has a 2 x 2 checker board
appearance which shows that features in the same category
are very similar to one another, but features in different
categories are dissimilar.

5.2.3 Repeated structure detection: The above
experiment shows that our descriptor can recognise
repeated structure, when its search region is hand selected.
In the next experiment, we use the detector and descriptor
together to automatically detect repeated structure.

We manually select a reference region, and then use the
detector and descriptor to find the 50 best-matching
regions. This was performed by detecting all interest points
and generating the corresponding features, and then
choosing the 50 closest features according to the EMD.
Then, we manually count the number of matches that
represent true repeated structure against false positives.
Table 1 shows the results for these experiments, and
Fig. 10 shows the specific points our system identified.

These results show that our detector/descriptor pair can
accurately identify repeated scene features. The first two
test scenes, ‘library-sparse’ and ‘windows-sparse’, contain
facades that are oblique to the range finder, resulting in

Table 1 Out of the strongest 50 matches, the percentages
of those that were correct

Scene % correct matches, %
library-sparse 86
windows-sparse 84
windows-front 94

Figure 10 Repeated structure detection for the ‘library-
sparse’ (top), ‘windows-sparse’ (middle), ‘windows-front’
(bottom) scenes

Blue sphere shows the region we picked and the green regions

show the 50 best matches found by the detector/descriptor
system

sparsely sampled surfaces. For these scenes, our descriptor
is still able to achieve a recognition accuracy above 80%.
The last scene, ‘windows-front’ contains a more densely
sampled facade, leading to a corresponding increase in
accuracy (94%).

A higher-level recognition system would integrate the
output of our descriptor and extract an overall scene model.
For example, a simple approach might be to take the
Hough transform over feature offsets to determine the
spacing between feature repetitions.

6 Conclusion

In this article, we have presented a 3D detector and
descriptor for the purpose of recognition in range images.
Our detector builds on proven 2D detection techniques
that have not previously been applied in the 3D setting.
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We have shown that our detector can repeatably extract the
same scene features under a range of transformations, and
in particular, that our detector exhibits high repeatability at
viewpoint changes of up to 60°. This is a significant
improvement over 2D detectors such as those used in
previous 3D recognition systems.

Our local 3D descriptor uses surface normals as its basic
descriptive  element, and is invariant to  rigid
transformations. The wuse of deviation angles and
histograms gives robustness to noise and sampling density.
We have presented empirical results that show good
recognition performance under viewpoint changes and
addition of noise. We have also successfully applied our
descriptor to two real-world recognition tasks involving
repeated structure detection.
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